Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
FEBS Lett ; 598(2): 199-209, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38158756

RESUMO

Human cytomegalovirus DNA polymerase processivity factor UL44 is transported into the nucleus by importin (IMP) α/ß through a classical nuclear localization signal (NLS), and this region is susceptible to cdc2-mediated phosphorylation at position T427. Whilst phosphorylation within and close to the UL44 NLS regulates nuclear transport, the details remain elusive, due to the paucity of structural information regarding the role of negatively charged cargo phosphate groups. We addressed this issue by studying the effect of UL44 T427 phosphorylation on interaction with several IMPα isoforms by biochemical and structural approaches. Phosphorylation decreased UL44/IMPα affinity 10-fold, and a comparative structural analysis of UL44 NLS phosphorylated and non-phosphorylated peptides complexed with mouse IMPα2 revealed the structural rearrangements responsible for phosphorylation-dependent inhibition of UL44 nuclear import.


Assuntos
Núcleo Celular , Citomegalovirus , Animais , Humanos , Camundongos , Transporte Ativo do Núcleo Celular , Núcleo Celular/metabolismo , Citomegalovirus/genética , Citomegalovirus/metabolismo , DNA Polimerase Dirigida por DNA/metabolismo , Sinais de Localização Nuclear/química , Sinais de Localização Nuclear/genética , Sinais de Localização Nuclear/metabolismo , Fosforilação
2.
FEBS Lett ; 596(18): 2409-2417, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35993565

RESUMO

We recently reported that the membrane-associated progesterone receptor (MAPR) protein family (mammalian members: PGRMC1, PGRMC2, NEUFC and NENF) originated from a new class of prokaryotic cytochrome b5 (cytb5 ) domain proteins, called cytb5M (MAPR-like). Relative to classical cytb5 proteins, MAPR and ctyb5M proteins shared unique sequence elements and a distinct heme-binding orientation at an approximately 90° rotation relative to classical cytb5 , as demonstrated in the archetypal crystal structure of a cytb5M protein (PDB accession number 6NZX). Here, we present the crystal structure of an archaeal cytb5M domain (Methanococcoides burtonii WP_011499504.1, PDB:6VZ6). It exhibits similar heme binding to the 6NZX cytb5M , supporting the deduction that MAPR-like heme orientation was inherited from the prokaryotic ancestor of the original eukaryotic MAPR gene.


Assuntos
Citocromos b , Receptores de Progesterona , Animais , Archaea/genética , Archaea/metabolismo , Citocromos b/genética , Citocromos b/metabolismo , Citocromos b5/genética , Heme/metabolismo , Mamíferos , Ligação Proteica , Receptores de Progesterona/genética
3.
Nat Commun ; 13(1): 1604, 2022 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-35338144

RESUMO

The MERS coronavirus (MERS-CoV) is a highly pathogenic, emerging virus that produces accessory proteins to antagonize the host innate immune response. The MERS-CoV ORF4b protein has been shown to bind preferentially to the nuclear import adapter IMPα3 in infected cells, thereby inhibiting NF-κB-dependent innate immune responses. Here, we report high-resolution structures of ORF4b bound to two distinct IMPα family members. Each exhibit highly similar binding mechanisms that, in both cases, lack a prototypical Lys bound at their P2 site. Mutations within the NLS region dramatically alter the mechanism of binding, which reverts to the canonical P2 Lys binding mechanism. Mutational studies confirm that the novel binding mechanism is important for its nuclear import, IMPα interaction, and inhibition of innate immune signaling pathways. In parallel, we determined structures of the nuclear binding domain of NF-κB component p50 bound to both IMPα2 and α3, demonstrating that p50 overlaps with the ORF4b binding sites, suggesting a basis for inhibition. Our results provide a detailed structural basis that explains how a virus can target the IMPα nuclear import adapter to impair immunity, and illustrate how small mutations in ORF4b, like those found in closely related coronaviruses such as HKU5, change the IMPα binding mechanism.


Assuntos
Infecções por Coronavirus , Coronavírus da Síndrome Respiratória do Oriente Médio , Interações Hospedeiro-Patógeno , Humanos , Imunidade Inata , NF-kappa B/metabolismo
4.
Sci Rep ; 11(1): 7050, 2021 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-33782435

RESUMO

Treatments for 'superbug' infections are the focus for innovative research, as drug resistance threatens human health and medical practices globally. In particular, Acinetobacter baumannii (Ab) infections are repeatedly reported as difficult to treat due to increasing antibiotic resistance. Therefore, there is increasing need to identify novel targets in the development of different antimicrobials. Of particular interest is fatty acid synthesis, vital for the formation of phospholipids, lipopolysaccharides/lipooligosaccharides, and lipoproteins of Gram-negative envelopes. The bacterial type II fatty acid synthesis (FASII) pathway is an attractive target for the development of inhibitors and is particularly favourable due to the differences from mammalian type I fatty acid synthesis. Discrete enzymes in this pathway include two reductase enzymes: 3-oxoacyl-acyl carrier protein (ACP) reductase (FabG) and enoyl-ACP reductase (FabI). Here, we investigate annotated FabG homologs, finding a low-molecular weight 3-oxoacyl-ACP reductase, as the most likely FASII FabG candidate, and high-molecular weight 3-oxoacyl-ACP reductase (HMwFabG), showing differences in structure and coenzyme preference. To date, this is the second bacterial high-molecular weight FabG structurally characterized, following FabG4 from Mycobacterium. We show that ΔAbHMwfabG is impaired for growth in nutrient rich media and pellicle formation. We also modelled a third 3-oxoacyl-ACP reductase, which we annotated as AbSDR. Despite containing residues for catalysis and the ACP coordinating motif, biochemical analyses showed limited activity against an acetoacetyl-CoA substrate in vitro. Inhibitors designed to target FabG proteins and thus prevent fatty acid synthesis may provide a platform for use against multidrug-resistant pathogens including A. baumannii.


Assuntos
Acinetobacter baumannii/metabolismo , 3-Oxoacil-(Proteína Carreadora de Acil) Redutase , Ácidos Graxos/biossíntese
5.
Nat Commun ; 12(1): 28, 2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33397924

RESUMO

SOX (SRY-related HMG-box) transcription factors perform critical functions in development and cell differentiation. These roles depend on precise nuclear trafficking, with mutations in the nuclear targeting regions causing developmental diseases and a range of cancers. SOX protein nuclear localization is proposed to be mediated by two nuclear localization signals (NLSs) positioned within the extremities of the DNA-binding HMG-box domain and, although mutations within either cause disease, the mechanistic basis has remained unclear. Unexpectedly, we find here that these two distantly positioned NLSs of SOX2 contribute to a contiguous interface spanning 9 of the 10 ARM domains on the nuclear import adapter IMPα3. We identify key binding determinants and show this interface is critical for neural stem cell maintenance and for Drosophila development. Moreover, we identify a structural basis for the preference of SOX2 binding to IMPα3. In addition to defining the structural basis for SOX protein localization, these results provide a platform for understanding how mutations and post-translational modifications within these regions may modulate nuclear localization and result in clinical disease, and also how other proteins containing multiple NLSs may bind IMPα through an extended recognition interface.


Assuntos
Núcleo Celular/metabolismo , Fatores de Transcrição SOXB1/química , Fatores de Transcrição SOXB1/metabolismo , Transporte Ativo do Núcleo Celular , Sequência de Aminoácidos , Animais , Drosophila/metabolismo , Células HEK293 , Humanos , Camundongos , Modelos Moleculares , Proteínas Mutantes/metabolismo , Células-Tronco Neurais/metabolismo , Sinais de Localização Nuclear/metabolismo , Mutação Puntual/genética , Ligação Proteica , Domínios Proteicos , Isoformas de Proteínas/metabolismo , Fatores de Transcrição SOXB1/genética , Relação Estrutura-Atividade
6.
Acta Crystallogr E Crystallogr Commun ; 76(Pt 7): 1136-1138, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32695467

RESUMO

Exceptionally large crystals of posnjakite, Cu4SO4(OH)6(H2O), formed during corrosion of a Swagelock(tm) Snubber copper gasket within the MX1 beamline at the ANSTO-Melbourne, Australian Synchrotron. The crystal structure was solved using synchrotron radiation to R 1 = 0.029 and revealed a structure based upon [Cu4(OH)6(H2O)O] sheets, which contain Jahn-Teller-distorted Cu octa-hedra. The sulfate tetra-hedra are bonded to one side of the sheet via corner sharing and linked to successive sheets via extensive hydrogen bonds. The sulfate tetra-hedra are split and rotated, which enables additional hydrogen bonds.

7.
Life Sci Alliance ; 2(5)2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31515291

RESUMO

Assembly factors play key roles in the biogenesis of many multi-subunit protein complexes regulating their stability, activity, and the incorporation of essential cofactors. The human assembly factor Coa6 participates in the biogenesis of the CuA site in complex IV (cytochrome c oxidase, COX). Patients with mutations in Coa6 suffer from mitochondrial disease due to complex IV deficiency. Here, we present the crystal structures of human Coa6 and the pathogenic W59CCoa6-mutant protein. These structures show that Coa6 has a 3-helical bundle structure, with the first 2 helices tethered by disulfide bonds, one of which likely provides the copper-binding site. Disulfide-mediated oligomerization of the W59CCoa6 protein provides a structural explanation for the loss-of-function mutation.


Assuntos
Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Cobre/metabolismo , Proteínas Mitocondriais/química , Proteínas Mitocondriais/metabolismo , Sítios de Ligação , Proteínas de Transporte/genética , Cristalografia por Raios X , Células HEK293 , Humanos , Mutação com Perda de Função , Proteínas Mitocondriais/genética , Modelos Moleculares , Ligação Proteica , Estrutura Secundária de Proteína
8.
Biochem Biophys Res Commun ; 518(3): 465-471, 2019 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-31443964

RESUMO

Acinetobacter baumannii (A. baumannii) is a clinically relevant, highly drug-resistant pathogen of global concern. An attractive approach to drug design is to specifically target the type II fatty acid synthesis (FASII) pathway which is critical in Gram negative bacteria and is significantly different to the type I fatty acid synthesis (FASI) pathway found in mammals. Enzymes involved in FASII include members of the short-chain dehydrogenase/reductase (SDR) superfamily. SDRs are capable of performing a diverse range of biochemical reactions against a broad spectrum of substrates whilst maintaining conserved structural features and sequence motifs. Here, we use X-ray crystallography to describe the structure of an SDR from the multi-drug resistant bacteria A. baumannii, previously annotated as a putative FASII FabG enzyme. The protein was recombinantly expressed, purified, and crystallized. The protein crystals diffracted to 2.0 Šand the structure revealed a FabG-like fold. Functional assays revealed, however, that the protein was not active against the FabG substrate, acetoacetyl-CoA. This study highlights that database annotations may show the necessary structural hallmarks of such proteins, however, they may not be able to cleave substrates that are typical of FabG enzymes. These results are important for the selection of target enzymes in future drug development.


Assuntos
Acinetobacter baumannii/química , Proteínas de Bactérias/química , Ácido Graxo Sintases/química , NADH NADPH Oxirredutases/química , Infecções por Acinetobacter/tratamento farmacológico , Infecções por Acinetobacter/microbiologia , Acinetobacter baumannii/metabolismo , Acil Coenzima A/metabolismo , Proteínas de Bactérias/metabolismo , Cristalografia por Raios X , Farmacorresistência Bacteriana Múltipla , Ácido Graxo Sintases/metabolismo , Humanos , Modelos Moleculares , NADH NADPH Oxirredutases/metabolismo , Conformação Proteica , Especificidade por Substrato
9.
Open Biol ; 9(6): 190066, 2019 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-31238823

RESUMO

The crystal structure of the F1-catalytic domain of the adenosine triphosphate (ATP) synthase has been determined from the pathogenic anaerobic bacterium Fusobacterium nucleatum. The enzyme can hydrolyse ATP but is partially inhibited. The structure is similar to those of the F1-ATPases from Caldalkalibacillus thermarum, which is more strongly inhibited in ATP hydrolysis, and in Mycobacterium smegmatis, which has a very low ATP hydrolytic activity. The ßE-subunits in all three enzymes are in the conventional 'open' state, and in the case of C. thermarum and M. smegmatis, they are occupied by an ADP and phosphate (or sulfate), but in F. nucleatum, the occupancy by ADP appears to be partial. It is likely that the hydrolytic activity of the F. nucleatum enzyme is regulated by the concentration of ADP, as in mitochondria.


Assuntos
Difosfato de Adenosina/metabolismo , Fusobacterium nucleatum/enzimologia , ATPases Translocadoras de Prótons/química , ATPases Translocadoras de Prótons/metabolismo , Proteínas de Bactérias/química , Cristalografia por Raios X , Fusobacterium nucleatum/química , Hidrólise , Modelos Moleculares , Conformação Molecular , Domínios Proteicos
10.
Acta Crystallogr F Struct Biol Commun ; 75(Pt 1): 54-61, 2019 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-30605126

RESUMO

The glutathione reductase (GR) from Streptococcus pneumoniae is a flavoenzyme that catalyzes the reduction of oxidized glutathione (GSSG) to its reduced form (GSH) in the cytoplasm of this bacterium. The maintenance of an intracellular pool of GSH is critical for the detoxification of reactive oxygen and nitrogen species and for intracellular metal tolerance to ions such as zinc. Here, S. pneumoniae GR (SpGR) was overexpressed and purified and its crystal structure determined at 2.56 Šresolution. SpGR shows overall structural similarity to other characterized GRs, with a dimeric structure that includes an antiparallel ß-sheet at the dimer interface. This observation, in conjunction with comparisons with the interface structures of other GR enzymes, allows the classification of these enzymes into three classes. Analyses of the kinetic properties of SpGR revealed a significantly higher value for Km(GSSG) (231.2 ± 24.7 µM) in comparison to other characterized GR enzymes.


Assuntos
Proteínas de Bactérias/química , Glutationa Redutase/química , Glutationa/química , NADP/química , Streptococcus pneumoniae/química , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Biocatálise , Clonagem Molecular , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Glutationa/metabolismo , Glutationa Redutase/genética , Glutationa Redutase/metabolismo , Cinética , Modelos Moleculares , NADP/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Streptococcus pneumoniae/enzimologia , Homologia Estrutural de Proteína , Especificidade por Substrato
11.
Nat Commun ; 9(1): 3703, 2018 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-30209309

RESUMO

Seven human isoforms of importin α mediate nuclear import of cargo in a tissue- and isoform-specific manner. How nuclear import adaptors differentially interact with cargo harbouring the same nuclear localisation signal (NLS) remains poorly understood, as the NLS recognition region is highly conserved. Here, we provide a structural basis for the nuclear import specificity of W proteins in Hendra and Nipah viruses. We determine the structural interfaces of these cargo bound to importin α1 and α3, identifying a 2.4-fold more extensive interface and > 50-fold higher binding affinity for importin α3. Through the design of importin α1 and α3 chimeric and mutant proteins, together with structures of cargo-free importin α1 and α3 isoforms, we establish that the molecular basis of specificity resides in the differential positioning of the armadillo repeats 7 and 8. Overall, our study provides mechanistic insights into a range of important nucleocytoplasmic transport processes reliant on isoform adaptor specificity.


Assuntos
Vírus Hendra/metabolismo , Isoformas de Proteínas/metabolismo , Proteínas Virais/metabolismo , alfa Carioferinas/metabolismo , Humanos , Ligação Proteica , Isoformas de Proteínas/genética , Proteínas Virais/genética , alfa Carioferinas/genética
12.
J Synchrotron Radiat ; 25(Pt 3): 885-891, 2018 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-29714201

RESUMO

MX2 is an in-vacuum undulator-based crystallography beamline at the 3 GeV Australian Synchrotron. The beamline delivers hard X-rays in the energy range 4.8-21 keV to a focal spot of 22 × 12 µm FWHM (H × V). At 13 keV the flux at the sample is 3.4 × 1012 photons s-1. The beamline endstation allows robotic handling of cryogenic samples via an updated SSRL SAM robot. This beamline is ideal for weakly diffracting hard-to-crystallize proteins, virus particles, protein assemblies and nucleic acids as well as smaller molecules such as inorganic catalysts and organic drug molecules. The beamline is now mature and has enjoyed a full user program for the last nine years. This paper describes the beamline status, plans for its future and some recent scientific highlights.

13.
Biochim Biophys Acta Bioenerg ; 1859(7): 482-490, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29621505

RESUMO

Type II NADH:quinone oxidoreductase (NDH-2) is a proposed drug-target of major pathogenic microorganisms such as Mycobacterium tuberculosis and Plasmodium falciparum. Many NDH-2 inhibitors have been identified, but rational drug development is impeded by the lack of information regarding their mode of action and associated inhibitor-bound NDH-2 structure. We have determined the crystal structure of NDH-2 complexed with a quinolone inhibitor 2-heptyl-4-hydroxyquinoline-N-oxide (HQNO). HQNO is nested into the slot-shaped tunnel of the Q-site, in which the quinone-head group is clamped by Q317 and I379 residues, and hydrogen-bonds to FAD. The interaction of HQNO with bacterial NDH-2 is very similar to the native substrate ubiquinone (UQ1) interactions in the yeast Ndi1-UQ1 complex structure, suggesting a conserved mechanism for quinone binding. Further, the structural analysis provided insight how modifications of quinolone scaffolds improve potency (e.g. quinolinyl pyrimidine derivatives) and suggests unexplored target space for the rational design of new NDH-2 inhibitors.


Assuntos
Quinolonas/química , Quinona Redutases/antagonistas & inibidores , Quinona Redutases/química , Bactérias/enzimologia , Sítios de Ligação , Cristalografia , Desenho de Fármacos , Ligação de Hidrogênio , Ubiquinona/química
14.
J Biol Chem ; 292(50): 20461-20471, 2017 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-28972175

RESUMO

Thioesterases catalyze the cleavage of thioester bonds within many activated fatty acids and acyl-CoA substrates. They are expressed ubiquitously in both prokaryotes and eukaryotes and are subdivided into 25 thioesterase families according to their catalytic active site, protein oligomerization, and substrate specificity. Although many of these enzyme families are well-characterized in terms of function and substrate specificity, regulation across most thioesterase families is poorly understood. Here, we characterized a TE6 thioesterase from the bacterium Neisseria meningitidis Structural analysis with X-ray crystallographic diffraction data to 2.0-Å revealed that each protein subunit harbors a hot dog-fold and that the TE6 enzyme forms a hexamer with D3 symmetry. An assessment of thioesterase activity against a range of acyl-CoA substrates revealed the greatest activity against acetyl-CoA, and structure-guided mutagenesis of putative active site residues identified Asn24 and Asp39 as being essential for activity. Our structural analysis revealed that six GDP nucleotides bound the enzyme in close proximity to an intersubunit disulfide bond interactions that covalently link thioesterase domains in a double hot dog dimer. Structure-guided mutagenesis of residues within the GDP-binding pocket identified Arg93 as playing a key role in the nucleotide interaction and revealed that GDP is required for activity. All mutations were confirmed to be specific and not to have resulted from structural perturbations by X-ray crystallography. This is the first report of a bacterial GDP-regulated thioesterase and of covalent linkage of thioesterase domains through a disulfide bond, revealing structural similarities with ADP regulation in the human ACOT12 thioesterase.


Assuntos
Acetilcoenzima A/metabolismo , Acil Coenzima A/metabolismo , Proteínas de Bactérias/metabolismo , Guanosina Difosfato/metabolismo , Modelos Moleculares , Neisseria meningitidis/enzimologia , Tioléster Hidrolases/metabolismo , Acetilcoenzima A/química , Acil Coenzima A/química , Substituição de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Biocatálise , Domínio Catalítico , Cristalografia por Raios X , Dimerização , Guanosina Difosfato/química , Mutação , Conformação Proteica , Dobramento de Proteína , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Espalhamento a Baixo Ângulo , Especificidade por Substrato , Tioléster Hidrolases/química , Tioléster Hidrolases/genética , Difração de Raios X
15.
Acta Crystallogr F Struct Biol Commun ; 73(Pt 10): 541-549, 2017 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-28994401

RESUMO

Type II NADH:quinone oxidoreductase (NDH-2) is a respiratory enzyme found in the electron-transport chain of many species, with the exception of mammals. It is a 40-70 kDa single-subunit monotopic membrane protein that catalyses the oxidation of NADH and the reduction of quinone molecules via the cofactor FAD. NDH-2 is a promising new target for drug development given its essential role in many bacterial species and intracellular parasites. Only two bacterial NDH-2 structures have been reported and these structures are at moderate resolution (2.3-2.5 Å). In this communication, a new crystallization platform is reported that produced high-quality NDH-2 crystals that diffracted to high resolution (2.15 Å). The high-resolution NDH-2 structure was used for in silico quinone substrate-docking studies to investigate the binding poses of menadione and ubiquinone molecules. These studies revealed that a very limited number of molecular interactions occur at the quinone-binding site of NDH-2. Given that the conformation of the active site is well defined, this high-resolution structure is potentially suitable for in silico inhibitor-compound screening and ligand-docking applications.


Assuntos
Bacillus/enzimologia , Quinona Redutases/química , Quinona Redutases/metabolismo , Sítios de Ligação/fisiologia , Cristalização/métodos , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Difração de Raios X/métodos
16.
Biochemistry ; 56(10): 1460-1472, 2017 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-28156101

RESUMO

Mycobacteria contain a large number of highly divergent species and exhibit unusual lipid metabolism profiles, believed to play important roles in immune invasion. Thioesterases modulate lipid metabolism through the hydrolysis of activated fatty-acyl CoAs; multiple copies are present in mycobacteria, yet many remain uncharacterized. Here, we undertake a comprehensive structural and functional analysis of a TesB thioesterase from Mycobacterium avium (MaTesB). Structural superposition with other TesB thioesterases reveals that the Asp active site residue, highly conserved across a wide range of TesB thioesterases, is mutated to Ala. Consistent with these structural data, the wild-type enzyme failed to hydrolyze an extensive range of acyl-CoA substrates. Mutation of this residue to an active Asp residue restored activity against a range of medium-chain length fatty-acyl CoA substrates. Interestingly, this Ala mutation is highly conserved across a wide range of Mycobacterium species but not found in any other bacteria or organism. Our structural homology analysis revealed that at least one other TesB acyl-CoA thioesterase also contains an Ala residue at the active site, while two other Mycobacterium TesB thioesterases harbor an Asp residue at the active site. The inactive TesBs display a common quaternary structure that is distinct from that of the active TesB thioesterases. Investigation of the effect of expression of either the catalytically active or inactive MaTesB in Mycobacterium smegmatis exposed, to the best of our knowledge, the first genotype-phenotype association implicating a mycobacterial tesB gene. This is the first report that mycobacteria encode active and inactive forms of thioesterases, the latter of which appear to be unique to mycobacteria.


Assuntos
Acil Coenzima A/química , Proteínas de Bactérias/química , Mycobacterium avium/enzimologia , Mycobacterium smegmatis/enzimologia , Palmitoil-CoA Hidrolase/química , Acil Coenzima A/metabolismo , Alanina/química , Alanina/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Ácido Aspártico/química , Ácido Aspártico/metabolismo , Proteínas de Bactérias/classificação , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Escherichia coli/enzimologia , Escherichia coli/genética , Expressão Gênica , Estudos de Associação Genética , Hidrólise , Isoenzimas/química , Isoenzimas/classificação , Isoenzimas/genética , Isoenzimas/metabolismo , Cinética , Mutação , Mycobacterium avium/genética , Mycobacterium smegmatis/genética , Palmitoil-CoA Hidrolase/classificação , Palmitoil-CoA Hidrolase/genética , Palmitoil-CoA Hidrolase/metabolismo , Domínios Proteicos , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/classificação , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Relação Estrutura-Atividade
17.
Sci Rep ; 7: 40165, 2017 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-28067272

RESUMO

Type II NADH:quinone oxidoreductase (NDH-2) is central to the respiratory chains of many organisms. It is not present in mammals so may be exploited as an antimicrobial drug target or used as a substitute for dysfunctional respiratory complex I in neuromuscular disorders. NDH-2 is a single-subunit monotopic membrane protein with just a flavin cofactor, yet no consensus exists on its mechanism. Here, we use steady-state and pre-steady-state kinetics combined with mutagenesis and structural studies to determine the mechanism of NDH-2 from Caldalkalibacillus thermarum. We show that the two substrate reactions occur independently, at different sites, and regardless of the occupancy of the partner site. We conclude that the reaction pathway is determined stochastically, by the substrate/product concentrations and dissociation constants, and can follow either a ping-pong or ternary mechanism. This mechanistic versatility provides a unified explanation for all extant data and a new foundation for the development of therapeutic strategies.


Assuntos
Catálise , Quinona Redutases/química , Quinona Redutases/metabolismo , Bacillales , Sítios de Ligação , Dinitrocresóis/metabolismo , Cinética , Ligação Proteica , Espécies Reativas de Oxigênio/metabolismo
18.
Nat Commun ; 7: 13014, 2016 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-27698405

RESUMO

The assembly and regulation of viral capsid proteins into highly ordered macromolecular complexes is essential for viral replication. Here, we utilize crystal structures of the capsid protein from the smallest and simplest known viruses capable of autonomously replicating in animal cells, circoviruses, to establish structural and mechanistic insights into capsid morphogenesis and regulation. The beak and feather disease virus, like many circoviruses, encode only two genes: a capsid protein and a replication initiation protein. The capsid protein forms distinct macromolecular assemblies during replication and here we elucidate these structures at high resolution, showing that these complexes reverse the exposure of the N-terminal arginine rich domain responsible for DNA binding and nuclear localization. We show that assembly of these complexes is regulated by single-stranded DNA (ssDNA), and provide a structural basis of capsid assembly around single-stranded DNA, highlighting novel binding interfaces distinct from the highly positively charged N-terminal ARM domain.


Assuntos
Proteínas do Capsídeo/metabolismo , Capsídeo/metabolismo , Vírion/metabolismo , Animais , Arginina/química , Cristalografia por Raios X , Replicação do DNA , DNA de Cadeia Simples/metabolismo , DNA Viral/metabolismo , Substâncias Macromoleculares , Conformação Proteica , Domínios Proteicos , Montagem de Vírus , Replicação Viral
19.
Structure ; 24(3): 364-74, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26853941

RESUMO

Chaperonins are essential biological complexes assisting protein folding in all kingdoms of life. Whereas homooligomeric bacterial GroEL binds hydrophobic substrates non-specifically, the heterooligomeric eukaryotic CCT binds specifically to distinct classes of substrates. Sulfolobales, which survive in a wide range of temperatures, have evolved three different chaperonin subunits (α, ß, γ) that form three distinct complexes tailored for different substrate classes at cold, normal, and elevated temperatures. The larger octadecameric ß complexes cater for substrates under heat stress, whereas smaller hexadecameric αß complexes prevail under normal conditions. The cold-shock complex contains all three subunits, consistent with greater substrate specificity. Structural analysis using crystallography and electron microscopy reveals the geometry of these complexes and shows a novel arrangement of the α and ß subunits in the hexadecamer enabling incorporation of the γ subunit.


Assuntos
Proteínas Arqueais/química , Proteínas Arqueais/metabolismo , Chaperoninas do Grupo II/química , Chaperoninas do Grupo II/metabolismo , Sulfolobus solfataricus/metabolismo , Cristalografia por Raios X , Evolução Molecular , Cinética , Microscopia Eletrônica , Modelos Moleculares , Filogenia , Multimerização Proteica , Estrutura Secundária de Proteína , Especificidade por Substrato , Temperatura
20.
J Biol Chem ; 291(4): 1866-1876, 2016 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-26538563

RESUMO

PaaI thioesterases are members of the TE13 thioesterase family that catalyze the hydrolysis of thioester bonds between coenzyme A and phenylacetyl-CoA. In this study we characterize the PaaI thioesterase from Streptococcus pneumoniae (SpPaaI), including structural analysis based on crystal diffraction data to 1.8-Å resolution, to reveal two double hotdog domains arranged in a back to back configuration. Consistent with the crystallography data, both size exclusion chromatography and small angle x-ray scattering data support a tetrameric arrangement of thioesterase domains in solution. Assessment of SpPaaI activity against a range of acyl-CoA substrates showed activity for both phenylacetyl-CoA and medium-chain fatty-acyl CoA substrates. Mutagenesis of putative active site residues reveals Asn(37), Asp(52), and Thr(68) are important for catalysis, and size exclusion chromatography analysis and x-ray crystallography confirm that these mutants retain the same tertiary and quaternary structures, establishing that the reduced activity is not a result of structural perturbations. Interestingly, the structure of SpPaaI in the presence of CoA provides a structural basis for the observed substrate specificity, accommodating a 10-carbon fatty acid chain, and a large conformational change of up to 38 Å in the N terminus, and a loop region involving Tyr(38)-Tyr(39). This is the first time PaaI thioesterases have displayed a dual specificity for medium-chain acyl-CoAs substrates and phenylacetyl-CoA substrates, and we provide a structural basis for this specificity, highlighting a novel induced fit mechanism that is likely to be conserved within members of this enzyme family.


Assuntos
Acetilcoenzima A/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Coenzima A/metabolismo , Streptococcus pneumoniae/enzimologia , Tioléster Hidrolases/química , Tioléster Hidrolases/metabolismo , Acetilcoenzima A/química , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Domínio Catalítico , Coenzima A/química , Cristalografia por Raios X , Cinética , Modelos Moleculares , Estrutura Terciária de Proteína , Streptococcus pneumoniae/química , Streptococcus pneumoniae/genética , Especificidade por Substrato , Tioléster Hidrolases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...